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Supersonic flow past a bluff body with a detached shock 
Part I Two-dimensional body 

By W. CHESTER 
Department of Mathematics, University of Bristol 

(Received 14 March 1956) 

SUMMARY 
The flow at high Mach number past a body with a rounded nose 

is considered. Viscosity and heat conduction are neglected, 
and the body is assumed to be two-dimensional and symmetrical 
about an axis parallel to the incident stream, 

An exact solution is first obtained in the case y --f 1, M --f co, 
where y is the adiabatic index and M is the Mach number. This 
solution is then used as the basis of a double expansion in 
6 = ( y -  l)/(y+ 1) and M-2, after the exact solution has been 
modified to make the series expansion converge near the body. 
The expansion is carried out as far as the terms of order (6 + M-2)2. 

The results are displayed for various values of 6 and M-2; 
typical results are as follows. (y = 1.4), 
and for a parabolic body having unit radius of curvature at the nose, 
the shock is approximately a parabola with radius of curvature 
1.822 at the nose. The distance between the body and the shock 
along the axis of symmetry is 0.323, and the height of the sonic 
point from this axis is 0.744 both on the shock and on the body. 
The actual pressure distribution on the body is shown in figure 4, 
and agrees well with experiment. The pressure falls to zero at 
a distance 0.86 downstream from the nose of the body, measured 
along the axis of symmetry. On the assumption that the pressure 
remains negligible beyond this point, the total drag is 1-39 poV2, 
where po is the density and V is the velocity of the incident stream. 

With M-2 = 0, 6 = Q 

INTRODUCTION 
It is well-known that a shock wave is produced when a supersonic stream 

impinges upon a stationary obstacle, and that if the obstacle has a blunt 
nose the shock wave is,curved and lies upstream of the body. It is the 
purpose of this paper to investigate the flow behind such a curved shock and 
its position relative to the obstacle producing it. Viscosity and heat conduc- 
tion are neglected (except, of course, at the shock), and the body is assumed 
to be two-dimensional and symmetrical about an axis in the direction of the 
incident stream. 
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An exact solution is first obtained for the case y -+ 1, M + to, where y is 
the adiabatic index and M is the Mach number of the incident stream. 
T h e  result for the pressure was originally obtained by Busemann (1933 ; 
see also Ivey, Klunker & Bowen 1948) using a less direct approach. It has, 
however, been suggested by Stocker (1955) that this is only a rough approxi- 
mation to the truth, even for very large Mach numbers, because the pressure 
field is particularly sensitive to the value of y. 

Since in practice y - 1 is fairly small, particularly at the higher tempera- 
tures associated with transition through a strong shock wave, it would seem 
natural to consider the possibility of improving the exact solution by using 
it as the first term of a series solution in powers of y -  1, and in inverse 
powers of the Mach number. It is, however, not difficult to show that such 
a solution does not exist, or at least lacks the desirable quality of being 
uniformly convergent in the neighbourhood of the body. The  reason is 
that in this region the exact solution fails to  give the correct approximation 
(for non-zero 6 + M V )  to the magnitude of the velocity, though, as will 
appear, the direction of the velocity and the pressure are given correctly 
to a first approximation. T h e  first problem is thus to correct the basic 
solution. When this is done, an iterative procedure can be used which, 
in theory, will give the answer to any desired degree of accuracy. In  this 
paper the solution is taken as far as those terms whose magnitude is of the 
second order of smail quantities. 

T h e  success of the method is due in part to the use of the von Mises 
transformation (Goldstein 1938) in which the stream function is used as 
one of the independent variables. This transformation simplifies the 
equations of motion, particularly when entropy variations must be taken into 
account. It was first used in problems of compressible flow by von KBrmin 
& Tsien (1938), and has since been used by several writers. It is particularly 
suited to the problem considered here. 

T h e  shape of the shock, rather than the shape of the body producing it, 
is assumed to be known a priori. T h e  boundary conditions resulting from 
the transition relations can then be obtained explicitly and applied on a 
known boundary. I n  principle it is quite possible, and not more difficult, 
to solve the problem for a given body shape ; but in practice the former 
approach gives a series which seems to converge more satisfactorily. This  
is probably due to the fact that, if the shape of the shock is known, all the 
boundary conditions, and the boundary on which they are applied, are 
known exactly. When the shape of the body is given, one of the boundary 
conditions must be applied at the body in the region where the error, even in 
the improved approximate solution, is relatively large. This will have an 
effect on the deduced shape of the shock (no longer known exactly), and 
hence on the boundary conditions applied at the shock in the next approxi- 
mation. 

Working with a known shock imposes no serious limitation on the 
results. Most of the analysis is in fact carried through assuming a parabolic 
profile for the shock, and attention is confined to the flow in the important 
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region near the nose. In this region the shape of the body is approximately 
parabolic, the error being within the accuracy of the present solution. 

On the other hand the solution fails to hold far downstream, for it 
predicts that the pressure on the body eventually becomes zero and changes 
sign. This is because one of the assumptions made in obtaining the 
approximate solution is not valid in a region where the pressure, and hence 
the density, falls to a small fraction of its value at the nose. (Essentially, 
the reason is that the expansion of pa in powers of 6 is not uniformly valid 
as p +O,  and this limits the validity of equation (13).) Experimental 
evidence does suggest, however, that at high Mach numbers the pressure 
eventually becomes negligible. Moreover, the conditions at the nose of 
the body are independent of conditions sufficiently far downstream where 
supersonic flow is well established. More precisely, the subsonic region 
at the nose is independent of the shape of the body downstream of the 
characteristic through the sonic point on the shock. Thus the ultimate 
breakdown of the solution should not affect its validity near the nose. 

NOTATION AND FUNDAMENTAL EQUATIONS 

Let a two-dimensional inviscid uniform stream, with supersonic velocity 
parallel to the x-axis, impinge upon a stationary blunt nosed body sym- 
metrical about the x-axis. The origin of co-ordinates (x, y )  is taken at the 
vertex of the shock wave which will be formed upstream of the body. 

The velocity, pressure and density in the uniform stream are denoted 
by (V,  0), p,, po respectively. Corresponding quantities in the region of 
disturbed flow behind the shock are (Vu, Vv), poV2p and pop(y + l)/(y - 1). 
The variables u, co, p and p so defined are thus non-dimensional. The 
reason for the factor ( y +  l)/(y- 1) in the representation of the density will 
appear later. I t  ensures that p remains finite when y = 1 and the Mach 
number of the uniform stream tends to infinity. 

The equations of conservation of mass, momentum and entropy are 

a a 
(pp-') + 2' - (pp') = 0, 

aY 
u 

where 6 has been written for (y - l)/(y + 1). 

such that S& = pu, 
continuous across the shock wave. 
the x-axis and on the body, + = 0. 

The first of equations (1) implies the existence of a stream function + 
In the uniform stream, #J = y and is 

Along 
= -pv. 

Hence, on the shock, + = y .  

2 A 2  
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If we change to independent variables (#,y), equations ( 1 )  transform to 

u2 + v2 + (1 + S)p/p  = 1 + (1 - 6)6-1M-%, 1 

PP-y = f(#), J 
where f is an arbitrary function of 4. 

It is also suitable to record here the form of equations (1) when z ( = #/y) 
and y are used as independent variables. In the ( y ,  z)-plane the body will 
be z = 0, the shock x = 1,  the axis of symmetry y = 0 ; and we have 

1 a a 
aY -@A = , - ,(P+ux),  

u2 + v2 + (1 + 6 ) , p / p  = 1 + (1 - S)6-1M-2, 

PP+ = f ( Y 4 .  
Furthermore, 

(3) 

a 2 = O o n y = O ,  and Since pv is an odd function of y ,  it follows that - 

hence, by (3), that pu = 6x. Together with the second and fourth of 
equations (3) (with f(0) determined by the transition relations across a 
normal shock) this serves to determine all the dependent variables as functions 
of x along the axis of symmetry. 

The distance between the body and the shock alongy = 0 is, from (4), 

aY 0 PV 

Let the shock be defined by x = X ( y )  (with X(0)  = 0), and let X,(y) 
denote the derivative of X(y) .  The transition relations across the shock 
wave then give the following boundary conditions to be satisfied at # = y : 

p = (1-6) 

J 1 
= 1 + (1 - 6)6-1M-Z( 1 +Xi) - 
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It follows immediately that 
-I (1 + 8M1- 8) 

(7) 
From the third equations of (Z), we now have 

- U = S]'z(L)d$+(:) 
V Pay PV I=' 

= 8zl'(L)d$+(E-:) 
aY I PV P - Y  

With the help of equations (6), this gives 

1 U a ' 1  
V aY P P V  
- = X,(y)+S- -d+ 

= X,(y)+Sr:(z)da+-.  sx 
z Y P V  P V  

It follows that the equation of the body is 

x = X ( y ) + S I ' l  d$. 
0 PV 

Note that, as y -+ 0, this becomes 

which by ( S ) ,  is just the distance between the body and the shock. 

(9) 

THE BASIC SOLUTION 

We consider first the case 8 -+ 0, M-2 + 0 (such that 6-1M-2 remains 
finite). Equation (7) then becomes 

+ S-1M-2 ; 
1 

f($) = l+X$($) 
and, when this is combined with equations (2), we arrive at the following 
relations : 

Hence u/v = Xv(y) ,  which also follows immediately from (8). The shock 
wave thus coincides with the body in the physical plane (though not in the 
(+,y)-plane). There is, however, a discontinuity in the rest of the flow 
variables between the shock and the body, in addition to the discontinuity 
across the shock. In  the (4,y)-plane, the solutions of the first two of 
equations (10) give 



358 W. Chester 

In particular, on the body (# = 0), we have 

p = sin2/3 + sin rs 9 1; cos dy 
dY 

where /3 is the inclination of the tangent to the horizontal. This is the 
result originally obtained by Busemann (1933).  

Henceforth the shock is assumed to be a parabola with unit radius of 
curvature at the vertex, so that its equation is x = &y2, and equations (11) 
give * 

= ( 1  + $2)1/2( 1 + y2)W ’ 

( 1  + *2)3/2 

= ( 1  + y 2 ) 3 / 2 . p  + 6 - 1 ~ - 2 ( 1  + $ 2 ) )  - 
1 (12) 

*Y 

(1 + *2)1/2 

p = (1 + y 2 ) 3 / 2  ’ 

= (1 + *2)1’2( 1 + y2)1 /2  ’ 

In order to improve this approximation, the straightforward approach would 
be to substitute this basic solution in the neglected terms of (2) and solve 
the new set of equations as far as the terms of order 6 and M-2. Unfor- 
tunately this process does not converge near $ = 0. For example, as 
$ -+ 0 v N $ according to (1 1) ; and hence the third of equations (2)  would 
give u/v N 6log+. The reason is that the solution is not expansible as a 
power series in 6 and M-2 when a+b = 0. It will appear that the velocity 
components are in fact 0 ( 6  + M-2)1/2 on the body. Thus the basic solution 
(12), which gives u = v = 0, is not a valid approximation to u and v for 
$ = 0, in the sense that the neglected terms are small compared with the 
term retained. On the other hand, p ,  p and u/(vy) are all finite and non-zero 
on the body according to (12); and hence for these quantities the basic 
solution is presumably a valid approximation in the above sense, for the 
error is presumably o (1) when (6 +M-2) is small. This will in fact be 
verified when the higher order terms are obtained. 

Equations (12) are accordingly used as the basic solution for p ,  p and 
u/(vy). It is then a simple matter to improve the corresponding solutions 
for the velocity components. 

From equations (2), (7) and ( 1 2 )  we have, correct to the first order, 

p = f($) py-1  = f(*){ 1 + 26 log p }  
P 

= 2- [ 1 + 6-lM-2(1+ $ 2 )  - 6 - 2M-2(1+ $ 2 )  + 
(1 + * 2 )  

so that 

When1 this is combined with u = yv, and all but the leading terms are 
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discarded, the following uniformly valid approximations are obtained : 

where d has been written for (6 + M-2). 

FIRST-ORDER APPROXIMATION 

From equations (12) and (15), we now have 

(16) 
(d+M-2$2)(1+y2)2 - s 

pv 
_ -  

{$’ + 3d log( 1 +Y~)}’/~( 1 + $’) ; 
and this is uniformly correct as far as terms which are O(d). 
substituted in the right-hand side of the equation 

This is 

a s  ”:)= a* -&), 
which is then integrated to obtain the next approximation for U/V.  

boundary condition is, from (6) with X ,  = y, 
The 

M-2 - U = y + - 6 (1 +y2) + - (1 +Y2Y 
V Y Y 

The details are straightforward and are omitted ; the only care required is in 
ensuring that the terms which are discarded are all o (d). 

The result is 

where 

g = 4dsinh-l 

+ d [ y2 -1 + 2 ( d - M - 2 ) l o g [ ~ ] - M - 2 .  (19) 
Y2 l0g(l+y2) 1 

Before the velocity components are calculated, it is necessary to remove 
We have already seen that, near the term in u/v which is singular at y = 0. 

y = 0, pu - ax  = S$/y, or 

(20) 
d$y( 1 +yZ)l’Z = 

+ (1 + $2j1/2 log( 1 +y2) 
say, where Uis  O(y2) .  Equations (15), (18) and (20) then combine to give 

(21) 
U 

V 
- =y-y(l+y2)g; 

and the singular term which appeared in equation (18) has now disappeared. 
These relations can now be substituted in equation (14) to give 

+ - d$Y3 
= (1 +y2)1/2(  1 + log( 1 + y2) 

Y(1 -g) [ ~ 2 + 3 ( d + M - a $ z ) l o g ( ~ ) ] 1 / 2  1 +y2 ; (22) 
+ (1 + y y (  1 + $2)1/2 
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and hence, from (20), 
d$Y 

= (1 +y2)"2( 1 + $2)1/2 log( 1 +y2) + 

The quantities of prime physical interest are now easily obtained. The 
shape of the body is calculated from (9) using (16). The equation is referred 
to an origin at the vertex of the shock, and so automatically gives the distance 
between the body and the shock. The equation is, correct to the first order, 

I-+ 4Y 
= BY2 + d(l +Y2)2 log{ 3d( 1 fy2) log (1 +y2) 

+ 1 +y2)2 log( 1 +y2). (25) 
Finally, the pressure is calculated from the eqdation 

ap - a@ 
a $ - & ,  

the right-hand side being given by (23). When this is integrated and 
combined with the boundary condition p = (1 - S)/(l +y2) for $ = y, one 
finds that 

(1 +y2)39 - (1 + $2)1/2 

[ (3dlog( * 1 +y2))l/' 1- = d [ i  log( 1 +y2) + 3y2 + 4 - 4( 1 + $2)1/2] sinh-l 

log(1 +y2) >I + 

SECOND-ORDER APPROXIMATION 

In principle the approximation can now be carried as far as the second 
order terms by repeating the process with the first-order approximation 
replacing the basic solution. 

Some care is required in the calculation of the integrand that occurs in 
equation (9) for the body contour. An expression for v is required which is 
correct as far as terms which are O(d3/2) on the body. Equation (24) is not 
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accurate to this order, since terms have been omitted from within the square 
brackets which are O(d2), but which do not tend to zero as 4 -+ 0. On the 
body, their contribution to co is O(d3/2). Essentially, this means that the 
first-order solution must be corrected in the same way that the zero-order 
solution is corrected before proceeding to higher order terms. Thus in the 
second of equations (2) we use the first-order solution for p to get an improved 
expression for u2 + v2, analogous to equation (14). This is then combined 
with the first order solution for u/v to obtain improved expressions for the 
velocity components. 

In practice the algebra becomes prohibitive once the stage of calculating 
the pressure is reached. Since this investigation is mainly concerned 
with conditions in the neighbourhood of the nose of the body (which are 
independent of the behaviour far downstream), the calculation is accordingly 
restricted to the expansion of the second-order terms omitting fourth and 
higher powers of y ; for this purpose equations (3) have been found superior 
to equations (2). Actually, the complete expression for the second-order 
terms is obtained in the case of the equation of the body contour, and is 
quoted in the appendix ; in equation (27) below all fourth and higher powers 
of y are neglected. Calculations suggest there is little loss of accuracy in 
ignoring the higher powers of y at least as far as the sonic point on the body. 
The final results only are quoted below. 

The equation of the body is 

( :d ) 4 
3d (i :d i) 3d x = idlog- +d2 -log- - - -idM-'lOg- +&Ma log- -1 + 

4 - id+&M-'+d' 

-dM-2 - log- - - +MA log- - - + O(y4). (27) (i :d k) ( :d :)] 
In the following expression for the pressure on the body (4 = 0), the first- 
order terms are quoted exactly; in the second-order terms fourth and 
higher powers of y are omitted. Thus, 

+Z($log(l +y2)+$y2+2}log i{l+(lfY2)1/2}]+ 

+ M-'[8 + 7y'+Z log(1 +y') - 7(1 + Y ~ ) ~ ' ~ ]  - :M-'(d - M-') + id2- 

16 3d 16 
21 4 15 - log2 - + - log 

4 ' } : 3 4  
4 3d 24 { 3d }]' (28) -log- + - + - M-4 log- - 4  
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NUMERICAL CALCULATIONS 

The results embodied in figures 1 to 4 are all based on equations (27) and 
It was found that the equation of the body was given with sufficient 

For example, the neglect of the higher-order 
(28). 
accuracy by equation (27). 

I I I 

-2 

005 0 . 2  

Figure 1. The  radius of curvature of the shock on the axis of symmetry for various 
The unit of length is the radius of 

The isolated points are 

terms iny2 produces an error in the ordinate of the sonic point of only 1 yo for 
y = 1-4, M-2 = 0. On the other hand, the pressure was calculated from 
equation (28) as it stands. 

values of d ( = ( ~ - l ) / ( y + l ) + M - ~ ) .  
curvature of the body on the axis of symmetry. 
experimental values. 

0 *4 

0 a 3  

0.2 

0.1 

Figure 2. The distance between the body and the shock along the axis of symmetry 
The unit of length is the 

The  isolated points 
for various values of d ( = ( y - - l ) / ( ~  tl)+M-:). 
radius of curvature of the body on the axis of symmetry. 
are experimental values. 
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The previous analysis is based on the assumption of a parabolicshockwith 
unit radius of curvature at the vertex. In  practice the results are of more 
significance when displayed for a given body, and in figures 1 to 4 the results 
have been adjusted so as to apply to a body which is a parabolic cylinder with 
unit radius of curvature at the vertex. 

The radius of curvature of the shock, wheny = 0 is given in figure 1. If 
this is denoted by r ,  the equation of the shock would then be y2 = 2rx. 
Since the adiabatic index decreases at the high temperatures associated with 
the conditions behind a strong shock wave, it was thought to be of interest to 

Figure 3. The ordinate of the sonic point on the body - - - -  on the 

exhibit the results for various values of 6. On the other hand, since the more 
significant parameter is d (= 6 + M P ) ,  and since 0 < M-2 < d, the variation 
with d is shown only for the two extreme values of M-2. 

Figure 2 shows the distance between the body and the shock, along the 
line of symmetry, as a fraction of the body radius of curvature. Again the 
variation is plotted against d for the two extreme values of M-2. 

The ordinate of the sonic point is shown in figure 3 for both the body and 
the shock. On the body the pressure at the sonic point is given by 

This result can be deduced from the second of equations (2). 
and (29) are together used to obtain figure 3. 
point on the shock follows at once from (6) with X ,  = y/r. 

shock. When M-2 = d ,  the sonic point on the shock is at the vertex. 

p ,  = (1 + s)-y 1 - 6)( 1 + 6 - 6M-2)-(1- (29) 
Equations (28) 

The ordinate of the sonic 
Explicitly it is 

When It is 
clear from this fact and from figure 3 that the position of the sonic point on 

= d (or 6 = 0), the sonic point is at the vertex of the shock. 



3 64 W. Chester 

the shock (for a given body shape) is far more sensitive to variations in both 
d and M-2 than the position on the body. When M-2 = 0, for example, the 
variation on the body is less than 20% of its minimum value over the range 
considered in figure 3. In this connection it is interesting to study figure 
4, which shows the pressure distribution along the body when M-2 = 0, 
and y = 1 or 1.4. The former is the exact solution (1 +y2)-3’2 ; the latter is 
calculated from (28). Figure 4 shows that the pressure in the neighbourhood 
of the sonic point is even less sensitive to variations in d than the position of 

Figure 4. The pressure distribution on the body; the abscissa is the distance along 
the axis of symmetry, measured from the stagnation point, as a fraction of 
the body radius of curvature. M-2 = 0, d = 1/6 (y = 1.4). 
- - - - -  M-2 = 0, d = 0 (y  = 1). The crosses denote experimental values 
for a circular cylinder with M = 5.8. 

the sonic point itself. Indeed, the Busemann solution would seem to be 
rather better than has previously been suggested. Moreover the maximum 
error between the stagnation point and the sonic point (and for some distance 
beyond) occurs at the stagnation point, where the pressure is known exactly 
from (7) and the second of equations (2). Explicitly it is given by 

p s t =  (1 +S)-l{l -S2-S(1  -S)M-2)-f(1-8)’8. (30) 
The experimental results displayed in the figures are taken from a paper 

by Oliver (1956). In  addition, the results of an experiment by Holder 
(private communication) are shown in figures 1 and 2. Both experiments 
were carried out on circular cylinders at Mach numbers of 5.8 (Oliver) and 
4 (Holder). A value of 1.4 for the adiabatic index has been assumed in 
plotting these results. 

The theory tends to underestimate the stand-off distance arid the radius 
of the shock, judging by the available experimental evidence. The pressure 
distribution on the body near the nose, however, agrees well with the 
measurements made by Oliver on a circular cylinder. 
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When d = Mv2 = 0, the pressure on the body is always positive and 

approaches zero asymptotically at large distances downstream. For non- 
zero values of the parameters, however, the pressure becomes zero at a 
finite distance downstream ; and this is borne out by experiment. On the 
assumption that beyond this point the pressure remains negligible, the total 
drag on the body would then be (including the upper and lower halves) 

the integral being taken from the stagnation point to the point of zero pressure. 
When d = M-2 = 0 the total drag is just 2poV2 for a parabola with unit 

radius of curvature at the nose. The corresponding result for d-l= 6 ,  
M-2 = 0 is 1 . 3 9 ~ ~  V2. The pressure becomes zero when y = 1.31, or 
x-xo.= 0.86 (here x-xo is the distance downstream measured along the 
axis of symmetry from an origin at the nose of the body). 

APPENDIX 
The equation of the body contour, with the second order terms given 

exactly, is as follows: 
x = &y2 + $dP4(Q - R)  + &M-'P4R + Qd2P4Q2(iR + 7y2) + +M4P4(Q - 1 - 

- ( 1  -y2)R2-(7+6y2)R+ 14P2(P- 1)}+$d2P4Qr(l-4y2)R+6P- 
L 

hR - 2 - 2(P+ 1)-1- (3R + 6y2 + 8)s- 2y2R1 - 3 1 f cosech f d f ]  + 
0 

r 

+ &d2P4 ( 1  + 2y2)R2 - + 4{1- 3y2 -y2R-l - 2 3( P - l)R-l}( P + 1)-1 - 

1 bR 

0 

1 
-~(4y-2-5)R+4~2(1  -3yz)PS+(S2+2S- R+:R-'S)(3R+6y2+8)+ 

+ (6 + 2R-1 + 3 log(&y2 coth if)}( cosech [ df - 

-&dM-2P ((7-4y2)R+16+ 1 2 ~ ' -  14P3}Q-(2y-2+24+ 18y2)R- 

-4(1 -y2)R2+2(3R+6y2+8+ 14P3)S+4(1 +4y2+7y4)(P+ l)-'- 

1 W 

[ 
- 3 P2 - P3 + +R) - 6 lo (2  exp f - 1 ) f  cosech f d f  , 

1 ?Y2 where P = ( 1  +Y~)"', Q = log {3dlog(1 + y z )  

A = log(1 +y2), s = log h{l+(l +y2)1/2}. 
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